The Mathematical Theory Of Selection Recombination And Mutation Download
The process of recombination in population genetics, in its deterministic limit, leads to a nonlinear ODE in the Banach space of finite measures on a locally meaty product infinite. Information technology has an embedding into a larger family of nonlinear ODEs that permits a systematic assay with lattice-theoretic methods for general partitions of finite sets. Nosotros discuss this type of system, reduce it to an equivalent finite-dimensional nonlinear problem, and establish a connectedness with an bequeathed sectionalisation process, astern in fourth dimension. We solve the finite-dimensional problem recursively for generic sets of parameters and briefly discuss the singular cases, and how to extend the solution to this situation.
Mathematics Subject Classification: 34G20, 06B23, 92D1.
Citation: Ellen Baake, Michael Baake, Majid Salamat. The general recombination equation in continuous time and its solution. Discrete & Continuous Dynamical Systems, 2016, 36 (1) : 63-95. doi: 10.3934/dcds.2016.36.63
References:
[1] | M. Aigner, Combinatorial Theory, reprint, Springer, Berlin, 1997. doi: 10.1007/978-3-642-59101-3. |
[2] | H. Amann, Gewöhnliche Differentialgleichungen, 2nd ed., de Gryuter, Berlin, 1995. Google Scholar |
[three] | E. Baake, Deterministic and stochastic aspects of single-crossover recombination, in: Proceedings of the International Congress of Mathematicians, Hyderabad, Bharat, 2010, Vol. Half dozen, ed. J. Bhatia, Hindustan Book Agency, New Delhi (2010), 3037-3053. |
[four] | E. Baake and I. Herms, Single-crossover dynamics: Finite versus space populations, Bull. Math. Biol., 70 (2008), 603-624; arXiv:q-bio/0612024. doi: x.1007/s11538-007-9270-five. |
[five] | M. Baake, Recombination semigroups on measure out spaces, Monatsh. Math., 146 (2005), 267-278 and 150 (2007), 83-84 (Addendum); arXiv:math.CA/0506099. doi: 10.1007/s00605-005-0326-z. |
[6] | M. Baake and Eastward. Baake, An exactly solved model for mutation, recombination and selection, Can. J. Math., 55 (2003), 3-41 and 60 (2008), 264-265 (Erratum); arXiv:math.CA/0210422. doi: 10.4153/CJM-2003-001-0. |
[vii] | E. Baake and T. Hustedt, Moment closure in a Moran model with recombination, Markov Proc. Rel. Fields, 17 (2011), 429-446; arXiv:1105.0793. |
[8] | E. Baake and U. von Wangenheim, Unmarried-crossover recombination and ancestral recombination copse, J. Math. Biol., 68 (2014), 1371-1402; arXiv:1206.0950. doi: ten.1007/s00285-013-0662-x. |
[9] | 1000. Baake and R. Speicher, in, preparation., (). Google Scholar |
[10] | J. H. Bennett, On the theory of random mating, Ann. Human Gen., eighteen (1954), 311-317. |
[11] | R. Bürger, The Mathematical Theory of Selection, Recombination and Mutation, Wiley, Chichester, 2000. |
[12] | K. J. Dawson, The decay of linkage disequilibrium under random union of gametes: How to calculate Bennett's principal components, Theor. Popul. Biol., 58 (2000), 1-xx. doi: 10.1006/tpbi.2000.1471. |
[thirteen] | M. J. Dawson, The development of a population under recombination: How to linearise the dynamics, Lin. Alg. Appl., 348 (2002), 115-137. doi: x.1016/S0024-3795(01)00586-nine. |
[14] | R. Durrett, Probability Models for Dna Sequence Development, 2d ed., Springer, New York, 2008. doi: x.1007/978-0-387-78168-6. |
[xv] | K. Esser, Due south. Probst and East. Baake, Partitioning, duality, and linkage disequilibria in the Moran model with recombination,, submitted, (). Google Scholar |
[16] | Due west. J. Ewens and G. Thomson, Properties of equilibria in multi-locus genetic systems, Genetics, 87 (1977), 807-819. |
[17] | W. Feller, An Introduction to Probability Theory and Its Applications, Vol. I, third ed., Wiley, New York, 1986. doi: 10.1063/1.3062516. |
[18] | H. Geiringer, On the probability theory of linkage in Mendelian heredity, Ann. Math. Stat., 15 (1944), 25-57. doi: 10.1214/aoms/1177731313. |
[19] | Y. Lyubich, Mathematical Structures in Population Genetics, Springer, Berlin, 1992. doi: 10.1007/978-3-642-76211-6. |
[20] | T. Nagylaki, J. Hofbauer and P. Brunovski, Convergence of multilocus systems under weak epistasis or weak pick, J. Math. Biol., 38 (1999), 103-133. doi: 10.1007/s002850050143. |
[21] | J. R. Norris, Markov Bondage, Cambridge University Press, Cambridge, 1998, reprint, 2005. |
[22] | O. Redner and M. Baake, Unequal crossover dynamics in detached and continuous time, J. Math. Biol., 49 (2004), 201-226; arXiv:math.DS/0402351. doi: 10.1007/s00285-004-0273-7. |
[23] | Northward. J. A. Sloane, The On-line encyclopedia of integer sequences, Lecture Notes in Computer science, 4573 (2007), p 130, https://oeis.org/ doi: ten.1007/978-iii-540-73086-6_12. |
[24] | E. D. Sontag, Structure and stability of sure chemical networks and applications to the kinetic proofreading model of T-prison cell receptor betoken transduction, IEEE Trans. Automated Control, 46 (2001), 1028-1047; arXiv:math.DS/0002113. doi: x.1109/9.935056. |
[25] | Due east. Spiegel and C. J. O'Donnell, Incidence Algebras, Marcel Dekker, New York, 1997. |
[26] | U. von Wangenheim, E. Baake and Chiliad. Baake, Single-crossover recombination in discrete fourth dimension, J. Math. Biol., 60 (2010), 727-760; arXiv:0906.1678. doi: 10.1007/s00285-009-0277-4. |
testify all references
References:
[1] | Thou. Aigner, Combinatorial Theory, reprint, Springer, Berlin, 1997. doi: x.1007/978-3-642-59101-3. |
[two] | H. Amann, Gewöhnliche Differentialgleichungen, 2nd ed., de Gryuter, Berlin, 1995. Google Scholar |
[3] | E. Baake, Deterministic and stochastic aspects of single-crossover recombination, in: Proceedings of the International Congress of Mathematicians, Hyderabad, India, 2010, Vol. VI, ed. J. Bhatia, Hindustan Book Bureau, New Delhi (2010), 3037-3053. |
[iv] | E. Baake and I. Herms, Single-crossover dynamics: Finite versus infinite populations, Bull. Math. Biol., 70 (2008), 603-624; arXiv:q-bio/0612024. doi: 10.1007/s11538-007-9270-five. |
[v] | M. Baake, Recombination semigroups on mensurate spaces, Monatsh. Math., 146 (2005), 267-278 and 150 (2007), 83-84 (Addendum); arXiv:math.CA/0506099. doi: x.1007/s00605-005-0326-z. |
[6] | K. Baake and Eastward. Baake, An exactly solved model for mutation, recombination and selection, Can. J. Math., 55 (2003), three-41 and 60 (2008), 264-265 (Erratum); arXiv:math.CA/0210422. doi: 10.4153/CJM-2003-001-0. |
[7] | Eastward. Baake and T. Hustedt, Moment closure in a Moran model with recombination, Markov Proc. Rel. Fields, 17 (2011), 429-446; arXiv:1105.0793. |
[8] | E. Baake and U. von Wangenheim, Single-crossover recombination and ancestral recombination trees, J. Math. Biol., 68 (2014), 1371-1402; arXiv:1206.0950. doi: 10.1007/s00285-013-0662-x. |
[9] | M. Baake and R. Speicher, in, preparation., (). Google Scholar |
[ten] | J. H. Bennett, On the theory of random mating, Ann. Human Gen., 18 (1954), 311-317. |
[11] | R. Bürger, The Mathematical Theory of Selection, Recombination and Mutation, Wiley, Chichester, 2000. |
[12] | K. J. Dawson, The disuse of linkage disequilibrium under random union of gametes: How to summate Bennett's main components, Theor. Popul. Biol., 58 (2000), i-20. doi: ten.1006/tpbi.2000.1471. |
[13] | Thou. J. Dawson, The evolution of a population under recombination: How to linearise the dynamics, Lin. Alg. Appl., 348 (2002), 115-137. doi: 10.1016/S0024-3795(01)00586-9. |
[14] | R. Durrett, Probability Models for Dna Sequence Evolution, 2nd ed., Springer, New York, 2008. doi: 10.1007/978-0-387-78168-half dozen. |
[xv] | M. Esser, S. Probst and Due east. Baake, Sectionalization, duality, and linkage disequilibria in the Moran model with recombination,, submitted, (). Google Scholar |
[sixteen] | W. J. Ewens and Thousand. Thomson, Properties of equilibria in multi-locus genetic systems, Genetics, 87 (1977), 807-819. |
[17] | W. Feller, An Introduction to Probability Theory and Its Applications, Vol. I, third ed., Wiley, New York, 1986. doi: 10.1063/1.3062516. |
[18] | H. Geiringer, On the probability theory of linkage in Mendelian heredity, Ann. Math. Stat., fifteen (1944), 25-57. doi: 10.1214/aoms/1177731313. |
[nineteen] | Y. Lyubich, Mathematical Structures in Population Genetics, Springer, Berlin, 1992. doi: ten.1007/978-3-642-76211-half dozen. |
[20] | T. Nagylaki, J. Hofbauer and P. Brunovski, Convergence of multilocus systems under weak epistasis or weak choice, J. Math. Biol., 38 (1999), 103-133. doi: 10.1007/s002850050143. |
[21] | J. R. Norris, Markov Bondage, Cambridge Academy Press, Cambridge, 1998, reprint, 2005. |
[22] | O. Redner and G. Baake, Unequal crossover dynamics in discrete and continuous fourth dimension, J. Math. Biol., 49 (2004), 201-226; arXiv:math.DS/0402351. doi: 10.1007/s00285-004-0273-7. |
[23] | N. J. A. Sloane, The On-line encyclopedia of integer sequences, Lecture Notes in Informatics, 4573 (2007), p 130, https://oeis.org/ doi: 10.1007/978-3-540-73086-6_12. |
[24] | E. D. Sontag, Construction and stability of certain chemical networks and applications to the kinetic proofreading model of T-cell receptor bespeak transduction, IEEE Trans. Automated Control, 46 (2001), 1028-1047; arXiv:math.DS/0002113. doi: 10.1109/9.935056. |
[25] | East. Spiegel and C. J. O'Donnell, Incidence Algebras, Marcel Dekker, New York, 1997. |
[26] | U. von Wangenheim, E. Baake and M. Baake, Single-crossover recombination in detached time, J. Math. Biol., 60 (2010), 727-760; arXiv:0906.1678. doi: 10.1007/s00285-009-0277-4. |
[i] | Ammari Zied, Liard Quentin. On uniqueness of measure-valued solutions to Liouville's equation of Hamiltonian PDEs. Detached & Continuous Dynamical Systems, 2018, 38 (2) : 723-748. doi: 10.3934/dcds.2018032 |
[2] | Azmy South. Ackleh, Vinodh Chiliad. Chellamuthu, Kazufumi Ito. Finite difference approximations for mensurate-valued solutions of a hierarchically size-structured population model. Mathematical Biosciences & Engineering, 2015, 12 (2) : 233-258. doi: 10.3934/mbe.2015.12.233 |
[3] | Philip Trautmann, Boris Vexler, Alexander Zlotnik. Finite element fault analysis for measure-valued optimal control problems governed by a 1D wave equation with variable coefficients. Mathematical Control & Related Fields, 2018, 8 (2) : 411-449. doi: 10.3934/mcrf.2018017 |
[four] | Cleopatra Christoforou, Myrto Galanopoulou, Athanasios E. Tzavaras. Measure-valued solutions for the equations of polyconvex adiabatic thermoelasticity. Discrete & Continuous Dynamical Systems, 2019, 39 (xi) : 6175-6206. doi: x.3934/dcds.2019269 |
[v] | Peng Zhou, Jiang Yu, Dongmei Xiao. A nonlinear diffusion trouble arising in population genetics. Discrete & Continuous Dynamical Systems, 2014, 34 (2) : 821-841. doi: 10.3934/dcds.2014.34.821 |
[6] | Kimie Nakashima. Indefinite nonlinear improvidence problem in population genetics. Discrete & Continuous Dynamical Systems, 2020, 40 (6) : 3837-3855. doi: 10.3934/dcds.2020169 |
[vii] | Michiel Bertsch, Flavia Smarrazzo, Andrea Terracina, Alberto Tesei. Signed Radon measure-valued solutions of flux saturated scalar conservation laws. Discrete & Continuous Dynamical Systems, 2020, 40 (6) : 3143-3169. doi: x.3934/dcds.2020041 |
[8] | Yu Liu, Ting Zhang. On weak (measure-valued)-strong uniqueness for compressible MHD organisation with not-monotone pressure law. Discrete & Continuous Dynamical Systems - B, 2022 doi: ten.3934/dcdsb.2021307 |
[9] | Kimie Nakashima, Wei-Ming Ni, Linlin Su. An indefinite nonlinear diffusion problem in population genetics, I: Existence and limiting profiles. Discrete & Continuous Dynamical Systems, 2010, 27 (ii) : 617-641. doi: 10.3934/dcds.2010.27.617 |
[x] | Yuan Lou, Wei-Ming Ni, Linlin Su. An indefinite nonlinear diffusion problem in population genetics, II: Stability and multiplicity. Discrete & Continuous Dynamical Systems, 2010, 27 (2) : 643-655. doi: ten.3934/dcds.2010.27.643 |
[eleven] | Ellen Baake, Michael Baake, Majid Salamat. Erratum and annex to: The general recombination equation in continuous fourth dimension and its solution. Discrete & Continuous Dynamical Systems, 2016, 36 (4) : 2365-2366. doi: 10.3934/dcds.2016.36.2365 |
[12] | Ellen Baake, Michael Baake. Haldane linearisation done right: Solving the nonlinear recombination equation the like shooting fish in a barrel way. Detached & Continuous Dynamical Systems, 2016, 36 (12) : 6645-6656. doi: 10.3934/dcds.2016088 |
[13] | Zhilan Feng, Carlos Castillo-Chavez. The influence of infectious diseases on population genetics. Mathematical Biosciences & Engineering, 2006, 3 (three) : 467-483. doi: 10.3934/mbe.2006.3.467 |
[14] | Reinhard Bürger. A survey of migration-pick models in population genetics. Discrete & Continuous Dynamical Systems - B, 2014, 19 (four) : 883-959. doi: 10.3934/dcdsb.2014.nineteen.883 |
[15] | Út V. Lê. Regularity of the solution of a nonlinear wave equation. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1099-1115. doi: 10.3934/cpaa.2010.nine.1099 |
[16] | Dominika Pilarczyk. Asymptotic stability of atypical solution to nonlinear rut equation. Discrete & Continuous Dynamical Systems, 2009, 25 (3) : 991-1001. doi: 10.3934/dcds.2009.25.991 |
[17] | Abdallah Benabdallah, Mohsen Dlala. Rapid exponential stabilization by boundary state feedback for a form of coupled nonlinear ODE and $ one-d $ rut diffusion equation. Discrete & Continuous Dynamical Systems - Due south, 2021 doi: 10.3934/dcdss.2021092 |
[18] | Haifeng Hu, Kaijun Zhang. Stability of the stationary solution of the cauchy problem to a semiconductor total hydrodynamic model with recombination-generation rate. Kinetic & Related Models, 2015, 8 (1) : 117-151. doi: ten.3934/krm.2015.viii.117 |
[xix] | Yingli Pan, Ying Su, Junjie Wei. Bistable waves of a recursive system arising from seasonal age-structured population models. Discrete & Continuous Dynamical Systems - B, 2019, 24 (ii) : 511-528. doi: 10.3934/dcdsb.2018184 |
[20] | Zhiming Liu, Zhijian Yang. Global attractor of multi-valued operators with applications to a strongly damped nonlinear wave equation without uniqueness. Discrete & Continuous Dynamical Systems - B, 2020, 25 (i) : 223-240. doi: 10.3934/dcdsb.2019179 |
DOWNLOAD HERE
Posted by: wellsorels1970.blogspot.com
Post a Comment